

People | Power | Partnership

HARTING

Current Measurement Technique

Transforming customer wishes into concrete solutions

The HARTING Technology Group is skilled in the fields of electrical, electronic and optical connection, transmission and networking, as well as in manufacturing, mechatronics and software creation. The Group uses these skills to develop customised solutions and products such as connectors for energy and data transmission applications including, for example, mechanical engineering, rail technology, wind energy plants, factory automation and the telecommunications sector. In addition, HARTING also produces electro-magnetic components for the automobile industry and offers solutions in the field of Enclosures and Shop Systems.

The HARTING Group currently comprises 51 subsidiary companies and worldwide distributors employing a total of more than 4,200 staff.

We aspire to top performance.

Connectors ensure functionality. As core elements of electrical and optical wiring, connection and infrastructure technologies, they are essential in enabling the modular construction of devices, machines and systems across a very wide range of industrial applications. Their reliability is a crucial factor guaranteeing smooth functioning in the manufacturing area, in telecommunications, applications in medical technology – in fact, connectors are at work in virtually every conceivable application area. Thanks to the consistent further development of our technologies, customers enjoy investment security and benefit from durable, long term functionality.

Always at hand, wherever our customers may be.

Increasing industrialization is creating growing markets characterised by widely diverging demands and requirements. The search for perfection, increasingly efficient processes and reliable technologies is a common factor in all sectors across the globe.

HARTING is providing these technologies – in Europe, America and Asia. The HARTING professionals at our international subsidiaries engage in close, partnership based interaction with our customers, right from the very early product development phases, in order to realise customer demands and requirements in the best possible manner.

Our people on location form the interface to the centrally coordinated development and production departments. In this way, our customers can rely on consistently high, superior product quality – worldwide.

Our claim: Pushing Performance.

HARTING provides more than optimally attuned components. In order to serve our customers with the best possible solutions, HARTING is able to contribute a great deal more and play a closely integrative role in the value creation process.

From ready assembled cables through to control racks or ready-to-go control desks: Our aim is to generate the maximum benefits for our customers – without compromise!

Quality creates reliability - and warrants trust.

The HARTING brand stands for superior quality and reliability – worldwide. The standards we set are the result of consistent, stringent quality management that is subject to regular certifications and audits.

EN ISO 9001, the EU Eco-Audit and ISO 14001:2004 are key elements here. We take a proactive stance to new requirements, which is why HARTING ranks among the first companies worldwide to have obtained the new IRIS quality certificate for rail vehicles.

HARTING technology creates added value for customers.

Technologies by HARTING are at work worldwide. HARTING's presence stands for smoothly functioning systems, powered by intelligent connectors, smart infrastructure solutions and mature network systems. In the course of many years of close, trust-based cooperation with its customers, the HARTING Technology Group has advanced to one of the worldwide leading specialists for connector technology. Extending beyond the basic functionalities demanded, we offer individual customers specific and innovative solutions. These tailored solutions deliver sustained effects, provide investment security and enable customers to achieve strong added value.

Opting for HARTING opens up an innovative, complex world of concepts and ideas.

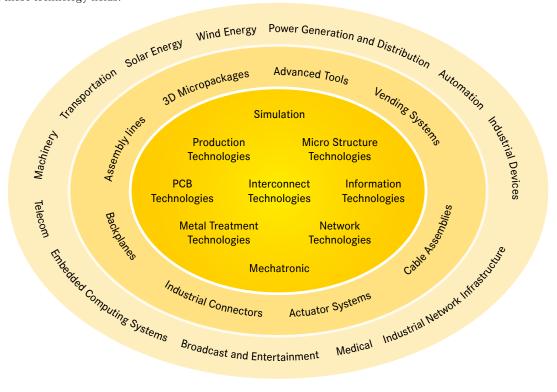
In order to develop connectivity and network solutions serving an exceptionally wide range of connector applications and task scopes in a professional and cost optimised manner, HARTING not only commands the full array of conventional tools and basic technologies. Over and beyond these capabilities, HARTING is constantly harnessing and refining its broad base of knowledge and experience to create new solutions that ensure continuity at the same time. In securing this know-how lead, HARTING draws on a wealth of sources from both inhouse research and the world of applications alike.

Salient examples of these sources of innovative knowledge include microstructure technologies, 3D design and construction technology, as well as high temperature

or ultrahigh frequency applications that are finding use in telecommunications or automation networks, in the automotive industry, or in industrial sensor and actuator applications, RFID and wireless technologies, in addition to packaging and housing made of plastics, aluminum or stainless steel.

HARTING solutions extend across technology boundaries.

Drawing on the comprehensive resources of the group's technology pool, HARTING devises practical solutions for its customers. Whether this involves industrial networks for manufacturing automation, or hybrid interface solutions for wireless telecommunication infrastructures, 3D circuit carriers with microstructures, or cable assemblies for high-temperature applications in the automotive industry – HARTING technologies offer far more than components, and represent mature, comprehensive solutions attuned to individual customer requirements and wishes. The range covers ready-to-use cable configurations, completely assembled backplanes and board system carriers, as well as fully wired and tested control panels.


In order to ensure the future proof design of RF- and EMC-compatible interface solutions, the central HARTING laboratory (certified to EN 45001) provides simulation tools, as well as experimental, testing and diagnostics facilities all the way through to scanning electron microscopes. In the selection of materials and processes, lifecycle and environmental aspects play a key role, in addition to product and process capability considerations.

HARTING knowledge is practical know-how generating synergy effects.

HARTING commands decades of experience with regard to the applications conditions of connectors in telecommunications, computer and network technologies and medical technologies, as well as industrial automation technologies, such as the mechanical engineering and plant engineering areas, in addition to the power generation industry or the transportation sector. HARTING is highly conversant with the specific application areas in all of these technology fields.

The key focus is on applications in every solution approach. In this context, uncompromising, superior quality is our hallmark. Every new solution found will invariably flow back into the HARTING technology pool, thereby enriching our resources. And every new solution we go on to create will draw on this wealth of resources in order to optimise each and every individual solution. In this way, HARTING is synergy in action.

General information

Field of applications

HARTING Hall effect current sensors are used for current measurement in power electronic applications. The hall effect sensors can measure different kinds of currents (AC, DC, pulsed, etc.)

- Generators
- Electrical drives
- Switch mode power supplies
- USV
- Other power electronic applications

Certified according to EN ISO 9001 in design/development, production, installation and servicing

Approvals:

for Industrial equipement DIN EN 50178: Electronic equipment for use in power installations

for Railway equipement DIN EN 50155: Railway applications –Electronic Devices on Rolling Stock

General information:

It is the user's responsibility to check whether the components illustrated in this catalogue comply with different regulations from those stated in special fields of application which we are unable to foresee.

We reserve the right to modify designs in order to improve quality, keep pace with technological advancement or meet particular requirements in production.

No part of this catalogue may be reproduced in any form (print, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without the prior written consent of HARTING Electric GmbH & Co. KG, Espelkamp. We are bound by the German version only.

© HARTING Electric GmbH & Co. KG, Espelkamp – All rights reserved, including those of the translation.

HARTING Current Measurement Technique

Contents	Page
HARTING Hall effect current sensors and measurement transformers	. 9 . 10
Current sensor HCM 200 A Current sensor HCM 200 A Small Current sensor HCM 300 A Current sensor HCM 300 A Small Current sensor HCM 500 A Current sensor HCM 1000 A Current sensor HCM 2000 A Current sensor HCM 2000 A Current sensor HCM 2000 A 1:4000	. 14 . 16 . 18 . 20 . 22 . 24
Current sensors HCMR Current sensor HCMR 500 A Current sensor HCMR 1000 A Current sensor HCMR 1000 A 1:4000 Current sensor HCMR 2000 A Current sensor HCMR 2000 A	. 30 . 32 . 34
Open-loop sensors Current sensors HCME 100 A 800 A	. 38
Definitions	
Current transformers Current transformer 4000/5 A	
Residual current transformers Residual current transformer 10 A	. 46

HARTING Hall effect current sensors and measurement transformers

Features

- No-contact measurement of current
- Precise measurement results
- Hall effect current sensors for power electronics
- Measurement transformers and residual current transformers for energy measurement and safety technology
- Customer-specific solutions

Current sensors and current transformers for measurement are electromechanical components that provide an accurate real-time representation of the input and output currents for energy consumers and energy producers. They use the magnetic field created by the current flowing through the conductor to carry out an electrically isolated measurement.

HARTING is pursuing two directions for current measurements:

"Active" current sensors are based on the well-established Hall effect principle; they are ideally suited for usage in power electronics since they can measure DC, AC and mixed currents with high precision. The measurement signals are then used for precisely controlling the power semiconductors and for monitoring performance and operability.

Current transformers for measurement and residual current transformers are low-impedance transformers that can convert high currents (proportionally and without changing the phases) to smaller currents. A distinction is made between measurement transformers and protective transformers. Measurement transformers are used for very precise measurements of energy consumption. Protective transformers, on the other hand, deliver evaluable signals for protective facilities.

HARTING Hall effect current sensors and measurement transformers

Customer-specific solutions

Are you unable to find a matching solution in our HARTING portfolio? Don't worry: we will design and manufacture our current measurement technique to fit your individual requirements.

Anything is possible – from small modifications to a complete new product.

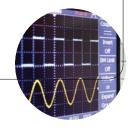
Our high level of vertical manufacturing integration and our platform-specific design enable us accommodate your wishes, even for small production batches.

Customer-specific tests:

 Electrical and mechanical tests can be carried out in our accredited test laboratory according to your requirements

Customised termination technology:

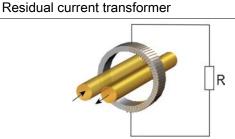
- Your preferred connector on the sensor
- A specific connector position
- Complete cable assembly for connecting the sensors within your application


New design:

- From design concept to series production

Adaptation of the electrical characteristics to meet customer requirements:

- Transmission ratios
- Output signal
- Voltage supply



Measurement principles

Current transformer

For detecting alternating currents in energy technology

Transformer Resid

Accuracy class: up to 0.2S

50 – 60 Hz (typical) 5 – 400 Hz

Test voltage: 3 kV

Suitable for high short-term currents

Accuracy class: 5P or 10P

Output signal of 5 A or 1 A at rated current

Verifiable

Transformers are based on the design of a current-fed transformer. They consist of a core with an applied low-impedance, closed secondary winding. The conductor on which the current is being measured is guided through the opening of the core. This conductor forms the primary winding of the transformer. The secondary winding is closed with a low-impedance load. The current that flows in the secondary winding is proportional to the primary current.

Transformers are used together with suitable evaluation units to make precise, electrically isolated energy measurements (e.g. for billing purposes). The operating principles of the residual current transformer and the transformer are similar. The aim here, however, is not to detect a current during normal operations, but rather to recognize when a fault current is present. So the forward and return conductors both pass through the sensor. During "fault-free" operations, the magnetic fields of the forward and return conductors cancel each other (the same applies to a three-phase system). However, if an earthing fault, for example, occurs, then there will be differences between the forward and return conductors that result in a magnetic field. This magnetic field and the resulting fault current are detected using the transformer and evaluated. Errors can then be detected and rectified before the entire facility needs to be shut down.

Measurement principles

Hall Effect Current Sensors Measurement of DC, AC and mixed currents in the power electronics **Open-Loop Current Sensors** Closed-Loop Current Sensors Accuracy ≈1 % of I_{PN} @ +25 °C Accuracy ≈1 % of I_{PN} @ +25 °C Accuracy ≈5 % of I_{PN} @ -40 °C ... 85 °C Accuracy ≈1 % of I_{PN} @ -40 °C ... 85 °C Linearity < 0.5 % Linearity < 0.1 % Response time ≈3 µs Response time ≈1 µs Frequency range 0 ... 25 kHz Frequency range 0...100 kHz Supply voltage ±15 V Supply voltage ±15 V ... 24 V Output signal 100 mA @ I_{PN} (typical) Output signal 4 V @ IPN For open-loop sensors, the primary current's magnetic field is Closed-loop current sensors have a design similar to that of concentrated in a magnetically soft toroid. A hall element that open-loop current sensors. The hall voltage, however is not generates a voltage proportional to the magnetic field or to the used directly as measurement signal but it is used to regulate current is positioned in the toroid's air gap. The hall voltage is a secondary current. The secondary current flows through a amplified and delivers a mapping of the primary current as an coil with N windings and generates a magnetic compensation output signal. field in the toroid. If the secondary current is multiplied by (x N) and is exactly as high as the primary current, the two magnetic One advantage of these sensors is the simple design. However, fields cancel each other in the toroid. The hall element always the temperature dependency of the hall element and of the regulates the magnetic flux to zero. The secondary current is simultaneously the sensor's output signal ($I_s = \frac{Ip}{N}$). amplification influences the accuracy. In comparison to open-loop current sensors the closed-loop current sensors consume more power, but work very precisely throughout the entire temperature range ($T_A = -40 \, ^{\circ}\text{C} \dots 85 \, ^{\circ}\text{C}$, accuracy ≤1 %).

Rolling Stocks	Wind Energy	Solar Energy	EDP Systems	Speed-regulated	Drives

HARTING Hall Effect Current Sensor HCM 200 A

Features

- · Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

I_{PN} Nominal primary current 200 Primary current, measuring range 0 ... ±300 Α I_{PM} R_{M} Burden resistance $V_C = \pm 15 \text{ V} - 5 \%$, $T_A = 85 °C - V_C = \pm 12 \text{ V} - 5 \%$, $T_A = 85 °C$ Primary current IP in A 2) 800 700 600 500 300 200 100 0 10 100 Burden resistance R_M in Ω I_{SN} Nominal secondary current 100 mA 1:2000 K_N Turns ratio V_{C} Power supply (±5 %) ±12 ... 15 ٧ Current consumption $19 + I_{S}$ mΑ I_{C} $@ V_C = 15 V$ Overall accuracy Χ ±0.8 % @ I_{PN} , $T_A = +25 \, ^{\circ}C$ E_L Linearity < 0.1 % Offset current I_{O} max ±0.3 mΑ @ $I_P = 0$, $T_A = +25$ °C Temperature drift of Io I_{OT} max ±0.8 mΑ -40 °C ... +85 °C Response time of I_{PN} <1 t_r μs >100 di/dt di/dt @optimal magnetic coupling A/µs Frequency range DC ... 100 kHz f -40 ... +85 °C T_A Ambient temperature range -45 ... +90 °C T_S Storage temperature range ≈0.15 Weight m kg R_{S} Coil resistance @ TA = +85 °C 25 Ω Test voltage, effective,

Technical characteristics

Approvals / Marking

 V_D

 V_{st}

 V_B

50 Hz, 1 min.

1.2/50 µs
Rated voltage¹⁾

Standards

Rated impulse voltage

EN 50 178

EN 61 373

10

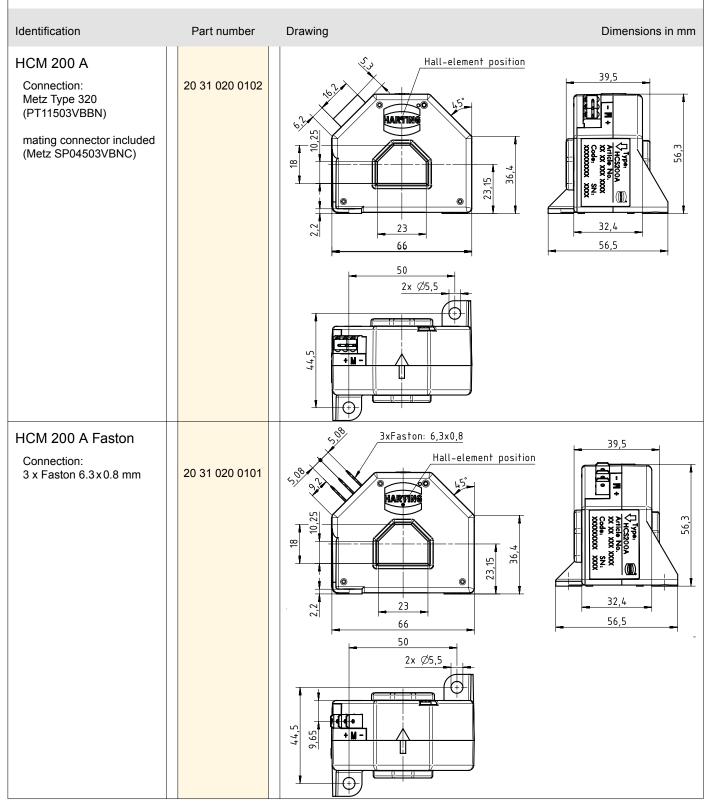
0.6

kV

kV

kV

¹⁾ Safe separation (overvoltage category III, pollution degree 2)


²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 200 A

 $I_{PN} = 200 A$

HARTING Hall Effect Current Sensor HCM 200 A Small

Features

- · Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- · High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- · Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

Technical characteristics 200 I_{PN} Nominal primary current I_{PM} Primary current, measuring range 0 ... ±420 Α R_{M} Burden resistance $V_C = \pm 15 \text{ V} - 5 \text{ %}, T_A = 85 \text{ °C} - V_C = \pm 12 \text{ V} - 5 \text{ %}, T_A = 85 \text{ °C}$ 1200 Primary current IP in A 2) 1000 800 600 400 200 80 100 Burden resistance R_M in Ω Nominal secondary current 100 mΑ I_{SN} K_N Turns ratio 1:2000 V_{C} Power supply (±5 %) ±12 ... 15 Current consumption I_{C} $17 + I_{S}$ mΑ @ $V_C = 15 V$ Overall accuracy % Χ ±0.5 @ I_{PN} , $T_A = +25 \, ^{\circ}C$ Linearity E_L < 0.1 % Offset current I_{O} max ±0.2 mΑ @ $I_P = 0$, $T_A = +25$ °C Temperature drift of Io I_{OT} max ±0.4 mΑ -40 °C ... +85 °C <1 Response time of IPN t_r μs di/dt di/dt @optimal magnetic coupling >100 A/µs Frequency range DC ... 100 kHz T_A -40 ... +85 °C Ambient temperature range Storage temperature range -45 ... +90 °C T_S Weight ≈80 m g R_S Coil resistance @ TA = +85 °C 29 Ω Test voltage, effective, V_D 3 kV 50 Hz, 1 min. Rated impulse voltage V_{st} 10 kV $1.2/50 \mu s$ V_B Rated voltage1) kV 0.6 EN 50 178 Standards EN 61 373 **C€** RoHS Approvals / Marking

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 200 A Small

I_{PN} = 200 A

Identification	Part number	Drawing	Dimensions in mm
HCM 200 A small	Part number 20 31 020 0301	Hall-element position	Dimensions in mm

HARTING Hall Effect Current Sensor HCM 300 A

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- · Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

300 I_{PN} Nominal primary current Primary current, measuring range 0 ... ±500 I_{PM} R_M Burden resistance $V_C = \pm 24V - 5\%$, $T_A = 85 °C - V_C = \pm 15 V - 5\%$, $T_A = 85 °C$ Primary current IP in A 2) 1200 1000 800 600 400 200 Burden resistance R_M in Ω I_{SN} Nominal secondary current 150 mA 1:2000 K_N Turns ratio V_{C} Power supply (±5 %) ±15 ... 24 ٧ Current consumption $20 + I_{S}$ mΑ I_{C} @ $V_C = 15 V$ Overall accuracy Χ ±0.5 % @ I_{PN}, T_A = +25 °C E_{L} < 0.1 % Linearity Offset current I_{O} max ±0.3 mΑ @ I_P = 0, T_A = +25 °C Temperature drift of Io I_{OT} max ±0.7 mΑ -40 °C ... +85 °C <1 t_r Response time of IPN μs di/dt @optimal magnetic coupling >100 di/dt A/µs DC ... 100 Frequency range kHz -40 ... +85 T_A Ambient temperature range °C T_S Storage temperature range -45 ... +90 °C Weight ≈0.25 m kg Coil resistance @ T_A = +85 °C 31 R_S Ω Test voltage, effective, V_D 3 kV 50 Hz, 1 min. Rated impulse voltage V_{st} 10 kV 1.2/50 µs V_{B} Rated voltage1) 0.6 kV EN 50 178 Standards EN 61 373 **C€** RoHS Approvals / Marking

Technical characteristics

GL c Sus

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 300 A

I_{PN} = 300 A

Identification	Part number	Drawing	Dimensions in mm
HCM 300 A Connection: Metz Type 320 PT11503VBBN) mating connector included (Metz SP04503VBNC)	20 31 030 0101	640,4 41,4 41,4 42,01,9x1,5 92,15 80	
		Hall Element	Position
		8 VOX 300000000 P P P P P P P P P P P P P P P	
		70 65 65 01 2x30,2 57	

HARTING Hall Effect Current Sensor HCM 300 A Small

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

I_{PN} Nominal primary current 300 Primary current, measuring range 0 ... ±500 I_{PM} R_{M} Burden resistance $V_C = \pm 20 \text{ V} - 5 \%$, $T_A = 85 \,^{\circ}\text{C} - \text{V}_C = \pm 12 \,^{\circ}\text{V} - 5 \%$, $T_A = 85 \,^{\circ}\text{C}$ 1200 Primary current IP in A 2) 1000 800 600 200 100 Burden resistance R_M in Ω I_{SN} Nominal secondary current 150 mA 1:2000 K_N Turns ratio V_{C} Power supply (±5 %) ±12 ... 20 ٧ Current consumption I_{C} $26 + I_{S}$ mΑ $@ V_C = 15 V$ Overall accuracy Χ ±0.5 % @ I_{PN}, T_A = +25 °C E_L Linearity < 0.1 % Offset current I_{O} max ±0.2 mΑ @ I_P = 0, T_A = +25 °C Temperature drift of Io I_{OT} max ±0.7 mΑ -40 °C ... +85 °C <1 t_r Response time of I_{PN} μs >100 di/dt di/dt @optimal magnetic coupling A/µs Frequency range DC ... 100 kHz -40 ... +85 °C T_A Ambient temperature range -45 ... +90 °C T_S Storage temperature range ≈100 Weight m g $R_{\rm S}$ Coil resistance @ TA = +85 °C 28 Ω Test voltage, effective, V_D kV 50 Hz, 1 min. Rated impulse voltage V_{st} 10 k۷ $1.2/50 \mu s$ Rated voltage1) kV V_B 0.6 EN 50 178 Standards EN 61 373 **C**€RoHS Approvals / Marking GL c Sus

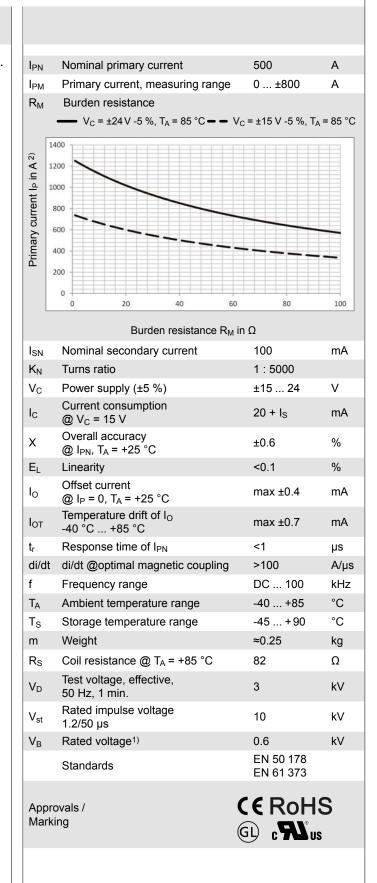
Technical characteristics

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 300 A Small

I_{PN} = 300 A

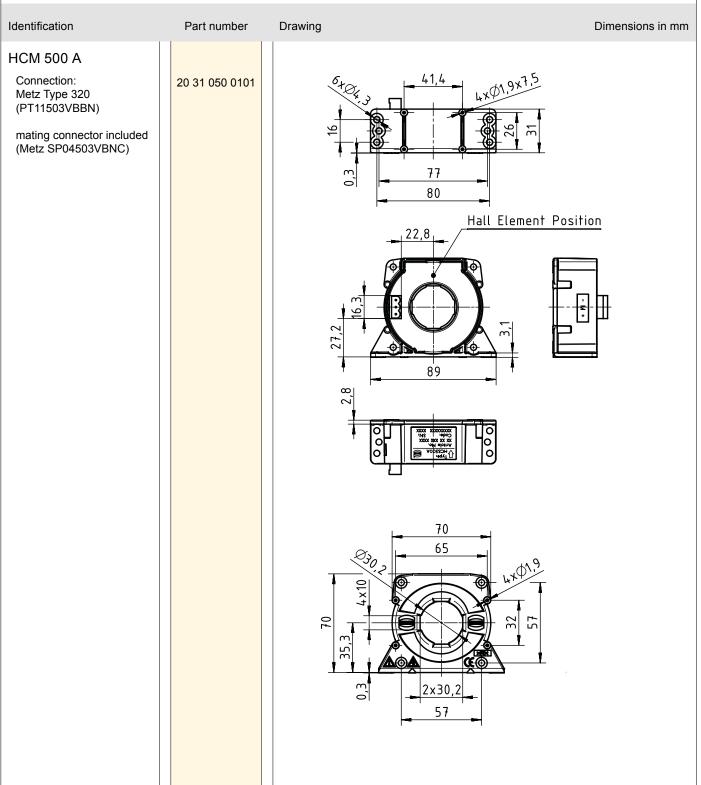

Identification	Part number	Drawing	Dimensions in mm
HCM 300 A small Connection: HARTING har-flexicon 3.81 MTV-3 TB 100 BK mating connector included (HARTING har-flexicon 3.81FPH-3B200BK)	20 31 030 0301	Hall-element position 18,1 18,1 10 68	2,3
		54,3 46 44 44 520,1 47,2 2x Ø4,3	

HARTING Hall Effect Current Sensor HCM 500 A

Features

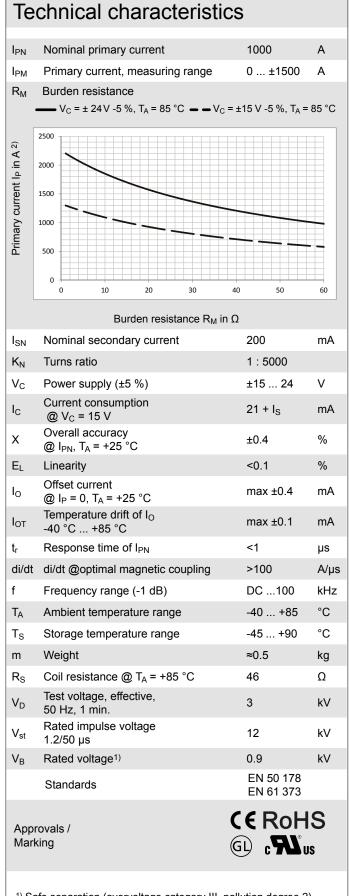
- · Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- · Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

¹⁾ Safe separation (overvoltage category III, pollution degree 2)


²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 500 A

 $I_{PN} = 500 A$



HARTING Hall Effect Current Sensor HCM 1000 A

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 1000 A

I_{PN} = 1000 A

Identification	Part number	Drawing	Dimensions in mm
HCM 1000 A Connection: Metz Type 320 (PT11503VBBN) mating connector included (Metz SP04503VBNC)	20 31 100 0101	Hall-Element Position 887	90 82,7 2x40,5 78 110 Revision B Tolerances: ±0.5 mm
HCM 1000 A JST Connection: JST B 3P-VH	20 31 100 0102	Hall-Element Position	90 82,7 2x40,5 82 E O O O O O O O O O O O O O O O O O O
HCM 1000 A with bolts with internal screen between primary and secondary circuit	20 31 100 9106	Hall-Element Position 11 7 100 8 8 8 78 100 11 11 11 11 11 11 11 11	15 25 27 27 27 27 27 27 27 27 27 27

HARTING Hall Effect Current Sensor HCM 2000 A

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

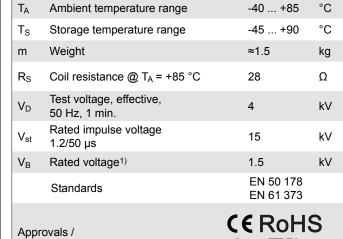
Nominal primary current 2000 I_{PN} I_{PM} Primary current, measuring range 0 ... ±3000 Α R_{M} Burden resistance $V_C = \pm 24 \text{ V} - 5 \text{ %}, T_A = 85 \text{ °C} - V_C = \pm 15 \text{ V} - 5 \text{ %}, T_A = 85 \text{ °C}$ 4000 in A^{2} 3500 3000 Primary current IP 2500 2000 1500 1000 500 0 10 30 Burden resistance R_{M} in Ω I_{SN} Nominal secondary current 400 mΑ K_{N} Turns ratio 1:5000 Power supply (±5 %) ±15 ... 24 V V_C Current consumption $20 + I_{S}$ mA I_{C} @ $V_C = 15 V$ Overall accuracy Χ ±0.3 % @ I_{PN} , $T_A = +25 \, ^{\circ}C$ E_{L} Linearity <0.1 % Offset current max ±0.5 mΑ I_{O} @ $I_P = 0$, $T_A = +25$ °C Temperature drift of IO

max ±1.2

DC ... 100

<1

>100


mΑ

μs

A/µs

kHz

Technical characteristics

1) Safe separation (overvoltage category III, pollution degree 2)

 I_{OT}

 t_{r}

f

Marking

-40 °C ... +85 °C

Response time of IPN

di/dt di/dt @optimal magnetic coupling

Frequency range (-1 dB)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 2000 A

I_{PN} = 2000 A

			•
Identification	Part number	Drawing	Dimensions in mm
HCM 2000 A Connection: Metz Type 320 (PT11503VBBN) mating connector included (Metz SP04503VBNC)	20 31 200 0101	Hall-element position	135 102 170 152

HARTING Hall Effect Current Sensors HCM 2000 A 1:4000

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, switched mode power supplies, UPS

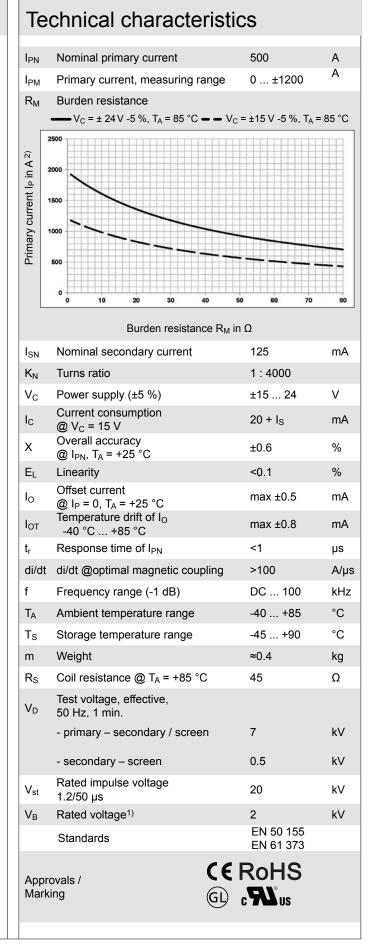
Technical characteristics Nominal primary current 2000 Α I_{PN} I_{PM} Primary current, measuring range 0 ... ±3000 R_{M} Burden resistance $V_C = \pm 24 \text{ V} -5 \text{ %}, T_A = 85 \text{ °C} - V_C = \pm 15 \text{ V} -5 \text{ %}, T_A = 85 \text{ °C}$ Primary current I_P in A²⁾ 5000 4000 3000 2000 1000 Burden resistance R_M in Ω I_{SN} Nominal secondary current 500 mΑ K_{N} Turns ratio 1:4000 V Power supply (±5 %) ±15 ... 24 V_C Current consumption $20 + I_{S}$ mΑ I_{C} @ $V_C = 15 V$ Overall accuracy Χ % ±0.3 @ I_{PN} , $T_A = +25 \, ^{\circ}C$ E_{L} Linearity < 0.1 % Offset current max ±0.5 I_{O} mΑ @ $I_P = 0$, $T_A = +25$ °C Temperature drift of IO max ±1.2 I_{OT} mΑ -40 °C ... +85 °C <1 t_{r} Response time of IPN μs di/dt di/dt @optimal magnetic coupling >100 A/µs f Frequency range (-1 dB) DC ... 100 kHz -40 ... +85 °C T_A Ambient temperature range Storage temperature range -45 ... +90 °C T_S Weight ≈1.5 m kg R_S Coil resistance @ T_A = +85 °C 17 Ω Test voltage, effective, V_D kV 50 Hz, 1 min. Rated impulse voltage V_{st} 15 kV $1.2/50 \mu s$ V_B Rated voltage1) kV 1.5 EN 50 178 Standards EN 61 373 C€ RoHS Approvals / Marking

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCM 2000 A 1:4000

I_{PN} = 2000 A


HCM 2000 A 1.4000 Connection: Lockable connector, 3 pins, 3.81 mm (Metz PT09403HBBT) mating connector included				
Connection: Lockable connector, 3 pins, 3.81 mm (Metz PT09403HBBT) mating connector included	Identification	Part number	Drawing	Dimensions in mm
(Metz SP06403VGNF)	Connection: Lockable connector, 3 pins, 3.81 mm	20 31 200 0103	position 49.6	4x065 5005

HARTING Hall Effect Current Sensors HCMR 500 A

Features

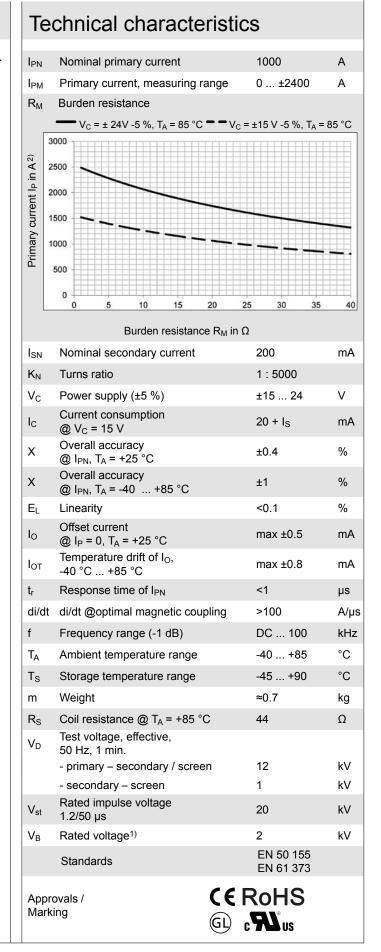
- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Internal screen between primary and secondary circuit.
- · Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, auxiliary converters

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCMR 500 A

I_{PN} = 500 A


Identification	Part number	Drawing	Dimensions in mm
HCMR 500 A Connection: 4 x screw termination with Faston 6.3 mm x 0.8 mm, 4 x hexagonal nuts included	20 31 050 9101	4x Faston 6,3 x 0,8 Hall-element position	4xM5 60 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 80 80 80 80 80 80 80 80 8
HCMR 500 A with feet Connection: 4 x screw termination with Faston 6.3 mm x 0.8 mm, 4 x hexagonal nuts included	20 31 050 8101	Hall-element position 70 70 70 70 70 70 70 70 70 7	
HCMR 500 A M12 with feet Connection: M12, A-coded, 5 pins	20 31 050 8102	M12 Speedcan connector Hall-element position	70 10 10 10 10 10 10 10 10 10 1

HARTING Hall Effect Current Sensors HCMR 1000 A with feet

Features

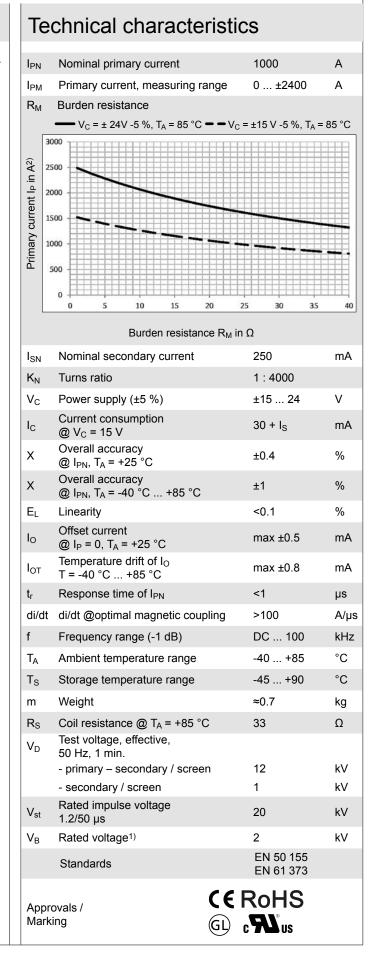
- Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Internal screen between primary and secondary circuit.
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives, auxiliary converters

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCMR 1000 A with feet

I_{PN} = 1000 A


Identification	Part number	Drawing	Dimensions in mm
HCMR 1000 A with feet Connection: 4 x screw termination with Faston 6.3 mm x 0.8 mm, 4 x hexagonal nuts included	20 31 100 8101	Hall-element position 15 15 15 15 15 28	78 64 2125 2125 2125 2125 2125 2125 2125 212
HCMR 1000 A Connection: 4 x screw termination with Faston 6.3 mm x 0.8 mm, 4 x hexagonal nuts included	20 31 100 9101	Hall-Element Position 4 x Faston: 6,3 x, 0,8 Position	14 N 16 64 64 64 64 64 64 64 64 64 64 64 64 64
HCMR 1000 A cable and 3 x HPR with feet Connection: HARTING 3 HPR with male Quintax insert	20 31 100 9103	1,5 position	78 78 78 78 78 78 78 78 78 78

HARTING Hall Effect Current Sensor HCMR 1000 A 1:4000

Features

- · Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Internal screen between primary and secondary circuit.
- · Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives and auxiliary converters

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCMR 1000 A 1:4000

I_{PN} = 1000 A

Identification	Part number	Drawing	Dimensions in mm
HCMR 1000 A 1:4000 Connection: 4 x hexagonal nuts included 4 x screw termination with Faston 6.3 mm x 0.8 mm	20 31 100 9107	Hall-Element Position A x Fas 6.3 x 0, 1	ton: 8 4x 1/6 64

HARTING Hall Effect Current Sensor HCMR 2000 A

Features

- · Measurable currents: AC, DC, pulsed, mixed, etc.
- · Hall effect compensated current sensor
- · High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Internal screen between primary and secondary circuit.
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives and auxiliary converters

Technical characteristics

I _{PN}	Nominal primary current	2000	Α					
I_{PM}	Primary current, measuring range	0 ±3600	Α					
R_M	Burden resistance							
V_C = ±24 V -5 %, T_A = 85 °C $ V_C$ = ±15 V -5 %, T_A = 85 °C								
	000							
Primary current lp in A ²)	500							
<u>a</u> 3	00 -							
ent 2	500							
- ID 2	000							
1ary	500							
Prin 1	000							
1	500							
	0 5 10 15	20 25	30					
		<u> </u>	10000					
	Burden resistance R _M in	Ω						
I _{SN}	Nominal secondary current	400	mA					
K _N	Turns ratio	1 : 5000						
V _C	Power supply (±5 %)	±15 24	V					
I_C Current consumption $@V_C = 15 \text{ V}$ 20 + I_S								
X	Overall accuracy @ I _{PN} , T _A = +25 °C	±0.3	%					
X	Overall accuracy @ I _{PN} , T _A = -40 °C +85 °C	±1	%					
EL	Linearity	<0.1	%					
Io	Offset current @ $I_P = 0$, $T_A = +25$ °C	max ±0.5	mA					
I _{OT}	Temperature drift of I _O -40 °C +85 °C	max ±1	mA					
t _r	Response time of I _{PN}	<1	μs					
di/dt	di/dt @optimal magnetic coupling	>100	A/µs					
f	Frequency range	DC 100	kHz					
T _A	Ambient temperature range	-40 +85	°C					
Ts	Storage temperature range	-45 +90	°C					
m	Weight	≈1.5	kg					
R_S	Coil resistance @ T _A = +85 °C	28	Ω					
V _D Test voltage, effective, 50 Hz, 1 min.								
	- primary – secondary / screen	12	kV					
	- secondary / screen	1.5	kV					
V_{st}	Rated impulse voltage 1.2/50 μs	20	kV					
V_{B}	Rated voltage ¹⁾	0.6	kV					
	Standards	EN 50 155 EN 61 373						
			_					

Approvals / Marking

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCMR 2000 A

I_{PN} = 2000 A

Identification	Part number	Drawing	Dimensions in mm
HCMR 2000 A Connection: 4 x screw termination with Faston 6.3 mm x 0.8 mm, 4 x hexagonal nuts included	20 31 200 9101	Hall-element position 4x Faston 6,3 x 0,8 50 x y y y y y y y y y y y y y y y y y y	102

HARTING Hall Effect Current Sensor HCMR 2000 A 1:4000

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- Hall effect compensated current sensor
- High accuracy over the entire measuring range
- Galvanic insulation between primary and secondary circuit.
- Panel mounting
- Internal screen between primary and secondary circuit.
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives and auxiliary converters

Technical characteristics

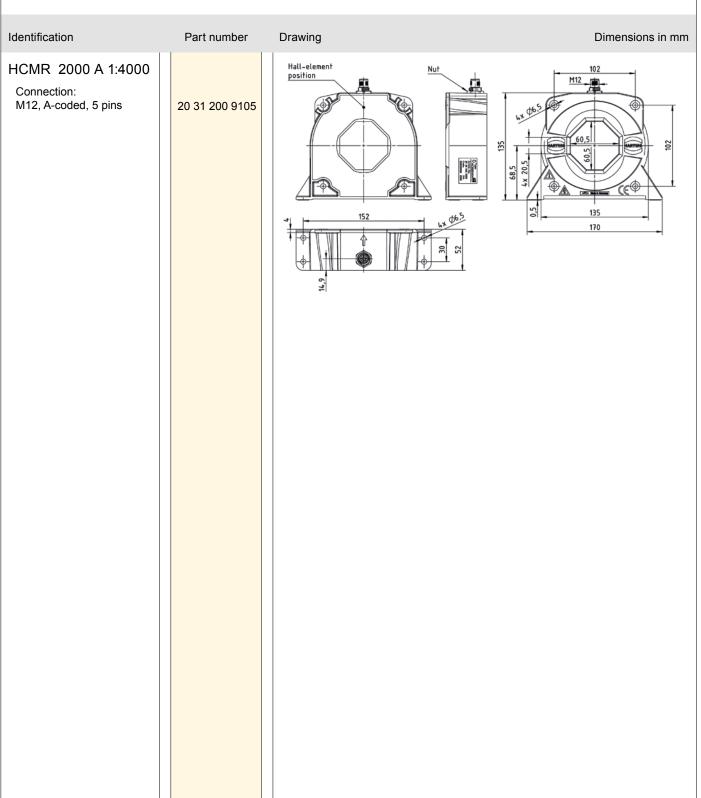
I_{PN}	Nominal primary current					00	Α
I _{PM}	Prima	ry current,	measurii	ng range	0	±3600	Α
R_{M}	Burde	n resistan	ice				
	— V _C	= ±24 V -5	%, T _A = 8	5 °C −−	V _C = ±15 V	-5 %, T _A	= 85 °C
	6000						
Primary current I _P in A ²⁾	5000						
	4000						
	3000						
	2000		٠.,				
	1000						
	0			шш			
	0	5	10	15	20	25	30

Rurd	Δn	resistance	R.,	in O
Duiu	CII	resistance	\sim M	111 22

I _{SN}	Nominal secondary current	500	mA
K _N	Turns ratio	1:4000	
V _C	Power supply (±5 %)	±15 24	V
I _C	Current consumption @ V _C = 15 V	20 + I _S	mA
x	Overall accuracy @ I _{PN} , T _A = +25 °C	±0.3	%
X	Overall accuracy @ I _{PN} , T _A = -40 °C +85 °C	±1	%
EL	Linearity	<0.1	%
Io	Offset current @ I _P = 0, T _A = +25 °C	max ±0.5	mA
I _{OT}	Temperature drift of I _O -40 °C +85 °C	max ±1	mA
t _r	Response time of I _{PN}	<1	μs
di/dt	di/dt @optimal magnetic coupling	>100	A/µs
f	Frequency range	DC 100	kHz
T _A	Ambient temperature range	-40 +85	°C
Ts	Storage temperature range	-45 +90	°C
m	Weight	≈1.5	kg
Rs	Coil resistance @ T _A = +85 °C	17	Ω
V _D	Test voltage, effective, 50 Hz, 1 min.		
	- primary – secondary / screen	12	kV
	- secondary / screen	1.5	kV
V _{st}	Rated impulse voltage 1.2/50 µs	20	kV
V _B	Rated voltage ¹⁾	2	kV
	Standards	EN 50 155 EN 61 373	

Approvals / Marking

¹⁾ Safe separation (overvoltage category III, pollution degree 2)


²⁾ Primary currents higher than I_{PM} only for peak

HARTING Hall Effect Current Sensor HCMR 2000 A 1:4000

I_{PN} = 2000 A

HARTING Hall Effect Current Sensor HCME 100 A ... 800 A

Features

- Measurable currents: AC, DC, pulsed, mixed, etc.
- Open-Loop hall effect current sensors
- Galvanic insulation between primary and secondary circuit
- Panel mounting
- Enclosure material and potting mass have a flammability rating according to UL 94 V 0
- Applications: frequency converters, electrical drives and auxiliary converters

НСМ	E 100			
I _{PN}	Nominal primary current	100	Α	
I _{PM}	Primary current, measuring range	0 ±300	Α	
НСМ	E 300			
I_{PN}	Nominal primary current	300	Α	
I _{PM}	Primary current, measuring range	0 ±900	Α	
НСМ	E 500			
I _{PN}	Nominal primary current	500	Α	
I _{PM}	Primary current, measuring range	0 ±1000	Α	
НСМ	E 800			
I_{PN}	Nominal primary current	800	Α	
I _{PM}	Primary current, measuring range	0 ±1000	Α	
V _{out}	Output voltage at I _{PN}	4	V	
R_L	Load resistance	>1	kΩ	
V _C	Power supply (±5 %)	±15	V	
I _C	Current consumption @ V _C = 15 V	< 25	mA	
R_{IN}	Insulation resistance	> 500	МΩ	
Χ	Overall accuracy without offset @ I _{PN} , T _A = +25 °C	±1	%	
EL	Linearity	<0.5	%	
Vo	Offset voltage @ I_P = 0, T = 25 °C	±10	mV	
V _{OOL}	Offset after I _{Pmax}	±10	mV	
V _{OT}	Thermal offset drift, T = -25°C +85°C	±1	mV/k	
V_{outT}	Thermal gain drift, T = -25 °C +85 °C	±0.05	%/K	
t _r	Response time of I _{PN}	<3	μs	
di/dt	di/dt @optimal magnetic coupling	>50	A/µs	
f	Frequency range (-1 dB)	DC 50	kHz	
T _A	Ambient temperature range	-25 +85	°C	
T _S	Storage temperature range	-25 +90	°C	
m	Weight Test voltage effective	≈0.2	kg	
V_D	Test voltage, effective, 50 Hz, 1 min.	3.5	kV	
V _B	Rated voltage ¹⁾	690	kV	
	Standards	EN 50 178 EN 61 373		
Approvals / Marking CEROHS GL CFL US				

¹⁾ Safe separation (overvoltage category III, pollution degree 2)

HARTING Hall Effect Current Sensor HCME 100 A ... 800 A

 $I_{PN} = 100 \text{ A}, 300 \text{ A}, 500 \text{ A}, 800 \text{ A}$

Identification	Part number	Drawing	Dimensions in mm
HCME 100 A HCME 300 A HCME 800 A Connection: Metz Type 320 (PT11504VBBN) mating connector included (Metz SP04504VBNC)	20 32 010 0101 20 32 030 0101 20 32 050 0101 20 32 080 0101	Hall-element position 78 Void Spanywood Span	27.5

Definitions of technical characteristics for current sensors

	technical characteristics	Definitions					
I _{PN}	Nominal primary current	RMS value for AC currents					
I _{PM}	Primary current, measuring range	Maximum measureable current, short overloads $<5 \times I_{PM}$ do not damage the sensor but will cause an additional permanent offset. The Primary current, measuring range depends on the hight of the supply voltage and the burden resistance. See formular in line R_{M}					
Х	Accuracy @ I _{PN} T _A = 25°C	Total error in % of I_{PN} at T_A = 25 °C including offset at 25 °C and linearity deviation. Closed-loop current sensor: Total error in % over whole temperature range = X+ (I_{OT} [mA]/ I_{SN} [mA] *100) Open-loop current sensor: Total error in % over whole temperature range = X+ max. Offset drift + max. gain drift = X + (I_{OT} [mV/K]*60K)/ I_{Out} *100) + I_{Out} T*60K					
t _r	Response time of I _{PN}		Time difference in which the primary current and the measuring signal reach 90% of the end value				
di/dt	di/dt @ optimal magnetic coupling	Maximum current rise rate correcly followed with an optimal magnetic coupling. Optimal magnetic coupling: Primary conductor is positioned in the middle of the sensor opening, no magnetic interference fields in the proximity of the sensor					
f	Frequency range (-1dB)	Small signal frequency range of the sensor electronic, measureable harmonic waves. At higher frequencies of the primary current (>5 kHz, dependig on the sensor type) I _P has to be reduced to avoid overheating of the transformer. Maximum allowed temperature of the sensor is 120 °C.					
R _M	Burden resistance	Closed-loop current sensors: The larger the burden resistance R_{M} the lower the Primary current, measuring range I_{PM}					
		$I_{PM} = \frac{V_C - V_A}{Rm + Rs} \times N$ $V_A = \text{Voltage drop internal amplifier}$					
							0000 :
		V _A in V	200 A	300 A	500 A	1000 A	2000 A
		HCMP	1.6	2	2	2	0.8
		HCMR					0.8

Remarks for current sensors

- If I_P flows in the direction of the arrow I_S is positive
- Over currents (»I_{PN}) or the missing of the supply voltage can cause an additional permanent magnetic offset
- The temperature of the primary conductor may not exceed 100 °C
- Standard interfaces with protection degree IP20

• These transformers may only be used in electrical or power electronic applications which fulfill the relevant regulations (standards, EMC requirements,...)

- Pay attention to protect non-insulated high-power current carrying parts against direct contact (e.g. with a protective enclosure)
- When installing this sensor please make sure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections
- The sensor may only be connected to a power supply respecting the SELV/PELV protective regulations according to EN 50 178. The installation of the power supply must be short-circuit-proof
- Disconnecting the main power must be possible
- The current sensors support a safe separation. The creepage and clearance distances are taken as a basis for the rated voltage. They are the shortest distance between the secondary connection and the sensor's window. The actual clearance and creepage distances depend on the position of the primary conductor respectively on the actual shortest distance between the primary conductor and the secondary connection

HARTING Current Transformer 4000/5 A

Features

- One-piece window type current transformer for tariff metering
- Calibrated with certificate without corrigendum
- Calibrated by an accredited test laboratory for electrical meters on request
- Including primary bus bar clamp and secondary termination cover

Technical characteristics

1			
Appro	ovals	DIN EN 61 8 IEC 60 044-	
I _{PN}	Rated current	4000	Α
K_N	Primary / secondary turns ratio	4000 / 5	Α
	Rated power	10	VA
	Class	E 0.5 FS 10	
f	Rated frequency	50 - 60	Hz
I _{th}	Thermal short time rated current	70 x I _{PN}	
l _{dyn}	Rated dynamic current	2.5 x I _{th}	
I_D	Rated continuous thermal current	1.2 x I _{PN}	
U _m	Highest voltage for equipment	0.72	kV
	Insulation level	3 kV / 1 min	
	Insulation class	В	
	Protection degree	IP65	
	Ambient temperature range	-25 +55	°C
m	Weight	ca. 3	kg
	Material enclosure	PC 15 % GF	
	Material potting	PU	

HARTING Current Transformer 4000/5 A

I_{PN} = 4000 A

Identification	Part number	Drawing	Dimensions in mm
Current transformer 4000/5 A	20 31 400 0101	1 Primary bus bar clamp (incl. screws) includ 2 Secondary termination cover (incl. screws) 142 200 60 60 60 60 60 60 60 60	ed in the delivery

HARTING Current Transformer 7000/5 A

Features

- One-piece window type current transformer for tariff metering
- Calibrated with certificate without corrigendum
- Calibration by an accredited test laboratory for electrical meters on request
- Including primary bus bar clamp and secondary termination cover

Technical characteristics

Appro	ovals	DIN EN 61 8 IEC 60 044-	
I _{PN}	Rated current	7000	Α
K_N	Primary / secondary turns ratio	7000 / 5	Α
	Rated power	10	VA
	Class	E 0,2 FS 25	
f	Rated frequency	50	Hz
I _{th}	Thermal short time rated current	100 kA / 1 s	
l _{dyn}	Rated dynamic current	$2.5 \times I_{th}$	
I_D	Rated continuous thermal current	1 x I _{PN}	
U _m	Highest voltage for equipment	0.72	kV
	Insulation level	3 kV / 1 min	
	Insulation class	В	
	Protection degree	IP65	
	Ambient temperature range	-25 + 55	°C
m	Weight	ca. 7,2	kg
	Material enclosure	PC 15 % GF	
	Material potting	PU	

HARTING Current Transformer 7000/5 A

I_{PN} = 7000 A

Identification	Part number	Drawing	Dimensions in mm
Current transformer 7000/5 A	20 31 700 0101	1 Primary bus bar clamp (incl. screws) included in 2 Secondary termination cover (incl. screws) included in 3 Secondary termination cover (incl. screws) incl. screws (incl. screws) incl. screws (incl. screws) incl. screws	

HARTING Residual Current Transformer 10 A

Features

- One-piece through-hole transformer for differential current measurement
- Max. cable diameter ≈110 mm
- HARAX® insulation displacement termination for easy assembly
- Optimised enclosure for high holding forces up to 250 kg
- Increased degree of protection (IP65)

Definition

HARTING residual current transformers – very robust and accurate

Residual current transformers detect fault (residual) currents at an early stage. They then generate output signals that can be used to take the necessary troubleshooting action before a protective mechanism is triggered that stops the facility. HARTING's residual current transformers are used to measure alternating currents. The one-piece through-hole transformer from HARTING detects residual currents in single-phase or multiphase power supplies. This component measures the difference between the currents in the forward and return lines to the energy consumers.

Technical characteristics

Арр	rovals	DIN EN 61 DIN EN 62 DIN EN 61 DIN EN 61	020 869-1
I _{PN}	Nominal primary current	10	Α
K _N	Turns ratio	1 : 600	
	Power	0.05	VA
	Class	3	
f	Frequency range	5 - 400	Hz
I _{th}	Thermal short time rated current	60 kA für 1	s
	Insulation level	3	KV
	Insulation class	E	
	Protection degree	IP65	
	Ambient temperature range	-15 +55	°C
m	Weight	1.9	kg
	Material enclosure	PA66-Gf25	
1			

HARTING Residual Current Transformer 10 A

I_{PN} = 10 A

Identification	Part number	Drawing	Dimensions in mm
Residual current transformer 10 A	20 32 001 7101	81	171 171
			150 4xØ11

HARTING.com – the gateway to your local website.

www.HARTING.ae www.HARTING.at www.HARTING.com.au www.HARTING.be www.HARTING.com.br www.HARTING.ca www.HARTING.ch www.HARTING.com.cn www.HARTING.cz www.HARTING.dk www.HARTING.es www.HARTING.fi www.HARTING.fr www.HARTING.co.uk www.HARTING.com.hk www.HARTING.hu www.HARTING.co.in www.HARTING.it www.HARTING.co.jp www.HARTING.co.kr www.HARTINGbv.nl www.HARTING.no www.HARTING.pl www.HARTING.pt www.HARTING.ro www.HARTING.ru www.HARTING.se www.HARTING.sg www.HARTING.sk www.HARTING.com.tr www.HARTING.com.tw www.HARTING-USA.com www.HARTING.co.za